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NASA plans call for long duration deep space missions with human crews. Because of light-
time delay and other considerations, increased autonomy is needed.  Crews on next-generation 
missions will likely be small, perhaps with as few as four members. A small crew is not likely 
to possess the full range of expertise needed to deal with unexpected failures and anomalies. 
Applied  artificial  intelligence  technologies  have  developed decision  support  tools  with  the 
potential to fill the gap, but these tools need to be integrated to provide a smooth operational 
capability.   In  this  paper  we  describe  such  an  integration  involving  anomaly  detection, 
diagnosis, system effect propagation, and plan repair.

Nomenclature
ISHM = Integrated Systems Health Management
P&S = Planning and Scheduling
AS = Autonomous Systems
ACAWS = Advanced Caution and Warning System
C&W = Caution and Warning
IMS = Inductive Monitoring System
EUROPA = Extendable Uniform Remote Operations Planning Architecture
SPIFe = Scheduling and Planning Interface for Exploration 
TEAMS RDS = Testability, Engineering, and Maintenance System Remote Diagnostic Server
FMECA = Failure Modes, Effects, and Criticality Analysis
DSH = Deep Space Habitat
MOT = Mission Operations Test
STN = Simple Temporal Network
AD = Activity Dictionary
MAPGEN = Mixed Initiative Activity Plan Generation
LADEE = Lunar Atmospheric Dust Environment Explorer
NDDL = New Domain Description Language

I. Introduction
uture NASA plans call for long duration deep space missions with human crews. Because of light-time delay 
and other considerations, it will not be feasible to micro-manage the mission from the ground to the extent that 

was done for the Apollo missions to the Moon; thus, increased autonomy is needed. Managing missions with less 
real-time ground assistance poses a number of challenges, however.

F
In  current  practice,  detection,  isolation,  and  recovery  from spacecraft  system faults  requires  large  teams  of 

specialized ground-based controllers that must mentally integrate data gathered via disparate operations products. 
Failure management is even more difficult,  and more reliant  on ground-based expertise,  for multiple  failures or 
unexpected  anomalies.  Crews  on  next-generation  missions  will  likely  be  small,  perhaps  with  as  few  as  four 
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members. Even with extensive training, a small crew is not likely to possess the full range of expertise needed to 
deal with unexpected failures and anomalies.

Fortunately, applied artificial intelligence technologies associated with the emerging fields of Integrated Systems 
Health Management (ISHM) and Planning and Scheduling (P&S) have matured to the point where they can begin to 
provide advanced decision support products for crew-members and flight controllers alike.  NASA’s Autonomous 
Systems (AS) project is exploring the use of advanced automation tools to support  such tasks as planning,  plan 
execution, anomaly detection, diagnosis, and failure recovery. Several such tools have been developed in past years. 
In conjunction with building generic  tools,  much of the work involves   developing system models  that  capture 
system structure, interconnections, tests, procedures, and failures. System models can support a wide variety of tools 
and fault management capabilities.

A recent focus of our work has been on integrating these tools so that they work together to provide a smooth  
operational capability.  In the past year, we have addressed the integration of three key tools, an Advanced Caution 
and Warning System (ACAWS), the Scheduling and Planning Interface for Exploration (SPIFe), and the Extendable 
Uniform Remote Operations Planning Architecture (EUROPA). The objective of our tool integration effort is to 
assist controllers and crew with determining effects of system failures on mission objectives and re-planning the 
mission  activities  timeline  to  recover  from  failures  and  accomplish  as  many  preplanned  mission  activities  as 
possible.   Thus,  the  integrated  system provides  a  capability  for  detecting  and  diagnosing  faults,  analyzing  the 
disabling effects of the faults on downstream components, determining the impact of those disabling effects on the 
existing crew activity schedule, and revising the schedule to cope with the faults.

To achieve this capability, we have developed methods to communicate failures between ISHM and the planning 
tools,  compactly  specify  resources  required  by  timeline  activities,  customize  interfaces  to  facilitate  real-time 
interaction, and utilize and extend the ACAWS, SPIFe, and EUROPA tools.

In the following sections,  we describe the component tools,  the roles they play in the combined system, the 
information flow between the tools, and the integration “glue” used to link them together.  We also discuss utility 
tools used to facilitate model building for the P&S components.

II. Decision Support Tools for Spacecraft Mission Management
In  this  section  we  describe  the  ACAWS  (anomaly  detection  and  diagnosis),  SPIFe  (plan  visualization  and 

editing), and EUROPA (plan generation) tools that are the components of the integrated system.

A. ACAWS
The Advanced  Caution  and Warning  System (ACAWS)  supports  spacecraft  failure  management  for  human 

missions  to  distant  destinations  and  human  missions  in  low Earth  orbit  with  smaller,  less  experienced  ground 
controller  teams.  Previous  manned  spacecraft  have  relied  on  a  caution  and  warning  (C&W)  system primarily 
implemented as threshold-based alarms issued by individual components and subsystems. A single fault can produce 
a multitude of C&Ws as each component affected by that fault issues its own alarm(s). Flight controllers train for 
years to develop necessary expertise for a specific discipline (subsystem) and work as a multi-discipline team to 
make sense of these numerous, nearly simultaneous C&W messages to deduce the instigating “root cause” fault(s), 
determine the effects of the fault(s) on the spacecraft and mission, and adapt workaround procedures to safely and 
effectively proceed with the mission. As humans venture farther from Earth, a paradigm change is required from 
current operations because the crew will not be able to depend on support from ground as readily as they do now 
when communication speed—limited by the speed of light—is noticeably slower (up to 22 min one-way to/from 
Mars) or when knowledge becomes more limited within the on-console ground teams as budget cuts and retirements 
force smaller, less experienced teams.

ACAWS provides an integrated toolset that includes anomaly and fault detection, automated diagnostic analysis 
and root cause identification, troubleshooting assistance when instrumentation alone is insufficient to provide an 
unambiguous diagnosis, effects assessment, and a dynamic and interactive graphical representation of the spacecraft 
systems and their health. 

For anomaly detection,  ACAWS utilizes the Inductive Monitoring System (IMS) developed at NASA Ames 
Research Center (ARC) (Iverson et al. 2012).1 IMS uses clustering to learn nominal system behavior from archived 
or simulated system data, automatically builds a “model” of nominal operations, and stores it in a knowledge base. 
The IMS real-time monitor and display informs users of degree of deviation from nominal performance. Analysis 
can detect conditions that may indicate an incipient failure or required system maintenance. 

For  automated  diagnosis  and  troubleshooting,  ACAWS  utilizes  the  Qualtech  Systems  Inc.  TEAMS  RDS 
(Testability Engineering and Maintenance System Remote Diagnostic Server) product (http://teamsqi.com). TEAMS 
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is a model-based system enabling a general diagnostic reasoner to be applied to any physical system by plugging in 
a  failure  propagation  model  of  the system and real-time  observations  about  the system’s  behavior.  This  model 
captures  considerable  system knowledge gathered from FMECA reports,  fault  trees,  schematics,  instrumentation 
lists, operational use cases, other technical documentation, and system engineering expertise. For real-time use, the 
model  is  reduced  to  the  relationship  between  various  system  failure  modes  and  system  instrumentation. 
Instrumentation  readings  are  received,  processed,  and  turned  into  pass/fail  results  for  specific  tests.  Abductive 
reasoning is then used to determine the set of failure modes that explain the test result signature.

In addition to providing knowledge necessary for diagnosis, the diagnostic model captures knowledge necessary 
for  system effects  reasoning.  However,  unless  the  model  is  developed  with  system effects  in  mind,  diagnostic 
models generally encode only 80%-90% of effects of a failure. For the exceptional 10%-20% of effects that cannot 
be determined from a diagnostic model alone, targeted knowledge can be added to the model in the form of Boolean 
expressions  that  indicate  whether  a component  is  impacted  by a failure  or  not,  and whether  an impact  should 
propagate  further  in the model.  The ACAWS System Effects reasoner  (Columbano et  al.,  2013),2 developed  at 
NASA Ames, exploits these augmented models to determine the full set of effects of a failure on the spacecraft (or 
generally, on the system of interest). 

The  final  module  of  ACAWS is  the operator  interface.  The operator  is  provided  the  results  of  each of  the 
reasoners – anomaly detection, diagnosis,  and system effects – in multiple  formats designed with the operators’ 
tasks in mind. Text log based formats provide all the details about either diagnosis or effects in one place that can be  
copied from ACAWS into other documents for communication purposes (say, between crew and ground, or in an 
anomaly resolution report). Component based formats,  together with the component hierarchy extracted from the 
diagnostic model, provide annunciator panel type displays that summarize the spacecraft’s health. Components can 
also be arranged to reflect the architecture of subsystems, providing a visual indication of the flow of a failure and 
its effects. Symbols with supplementary color-coding added to the components provide visual indication of failure; 
possible failure (that is, a component that is a part of an ambiguous diagnosis); or affected by a failure or possible 
failure,  either  total  loss  of  function  or  loss  of  redundancy.  In addition  to  displaying  real-time  information,  the 
ACAWS  operator  interface  provides  task-facilitating  query  options.  For  example,  the  operator  can  suppose 
component(s)  failed or  may have  failed and query the system for  the effects  of  that  scenario – very useful  for 
operator training or to explore hypothetical “what-if” situations while monitoring a flight. Also, the operator can ask 
for common ancestors of selected components, useful for determining next-worst failure – an analysis often at the 
forefront  of a controller’s  failure management  process,  or  can ask for  the path from the failure(s)  to a selected 
component to analyze the propagation from, say, an electrical power system failure to a coolant pump. Figure 1 
shows one view of an operator-customizable arrangement of information panes in a hybrid real-time plus analysis 
mode (McCann et al., 2013).3

Figure 1: ACAWS Information Panes.
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ACAWS has been evaluated and matured through a variety of Earth-analog mission operations tests, such as the 
Habitat Demonstration Unit Desert Research and Technology Studies (D-RaTS: www.nasa.gov/exploration/analogs/
desertrats), Deep Space Habitat (DSH) Autonomous Mission Operations evaluation (Frank et al., 2013),4 and the 
Deep  Space  Habitat  Mission  Operations  Test.  Most  recently,  it  is  being  applied  to  a  ground-based  capability 
demonstration during Exploration Flight Test 1 (EFT-1) – an unmanned test flight of the next-generation manned 
spacecraft – Orion – being designed for missions to an asteroid and eventually to Mars. 

B. SPIFe
SPIFe (Marquez et al.,  2010)5 is used for plan creation,  validation and editing.   It  was developed as a joint 

project  at  NASA  Ames  and  NASA’s  Jet  Propulsion  Laboratory  (JPL).   SPIFe  was  built  using  the  Eclipse 
development environment, which facilitates customization using separate plugins.

The tool includes a sophisticated plan database and graphical user interface to detect flaws in the plan that can be 
interactively  fixed  by  the  user.    These  include  situations  where  an  activity  violates  user-specified  temporal 
constraints,  over-subscribes  resources,  or  fails  to meet  state  requirements.   The tool  specifies  the type,  time  of 
occurrence,  and  culprit  activities  for  each  flaw.   The  user  then  has  the  option  of  adding,  deleting,  or  moving 
activities, or modifying activity parameters, in order to resolve each flaw.  Flaws may also be waived by the user.

The static properties of activities are specified by means of an Activity Dictionary (AD), which is a type of model 
of the application domain.  In the AD one can define state variables, as well as resource types and resource limits,  
and  then  specify  the  state  requirements  and  effects  of  activities,  and  their  impact  on  resources.  The  AD  is 
procedurally oriented, allowing the use of javascript to calculate resource usage and other values, based on activity 
parameters and other variables.

SPIFe is designed for interactive use with an extensive graphical user interface (GUI).  The GUI provides several 
panes, or views of the plan, for different types of user interaction.   The Timeline view presents a Gannt-like picture 
of the activity schedule with the activities arranged chronologically from left to right, and organized into separate 
rows according to user-selected options such as by category or parameter value.  It can also be toggled to show 
instead a tabular listing of the activities. The Plan Advisor view shows detailed information about the flaws, which 
are also flagged in the Timeline view.  An Activity Dictionary view can be used to drag new activities into the plan, 
while a Details view focuses on individual activities and their parameters.  The different views are fully integrated,  
and selections and changes in each are reflected in the others.  There is also a Plan Navigator pane for selecting and 
opening previously saved or imported plans.  Several plans may be open at the same time, using different tabs, but  
only the selected tab is visible in the views.

The SPIFe tool was used for ground planning on the Mars Phoenix mission and is in current use for the Mars 
Science Laboratory Curiosity rover as well as various applications for the International Space Station.  It has also 
seen use in several analog operations tests and studies.

C. EUROPA
Developed at NASA Ames, EUROPA (Frank and Jonsson, 2003),6 supports automatic planning with temporal, 

state,  and numeric  constraints.   In  contrast  to  the  procedural  orientation  of  SPIFe,  it  is  based  on a declarative 
language similar to those used in the automated planning community, and utilizes a least commitment planner. An 
early version of EUROPA was incorporated into the MAPGEN tool used in tactical planning for the Opportunity 
rover  in the continuing  Mars  Exploration  Rover  mission.    It  also traces its  heritage  to the automatic  planning 
component of the Remote Agent Experiment,  where an onboard artificial intelligence (AI) system controlled the 
Deep Space I robotic spacecraft for several days (Muscettola et al., 1998).7

The EUROPA database provides a plan consisting of a set of activities that are interrelated via a rich set of 
temporal,  state,  and resource  properties.  In particular,  it  includes  a  Simple  Temporal  Network  (STN) (Dechter, 
Meiri,  and  Pearl, 1991)8 to  support  planning  and  ensure  consistency  of  the  temporal  constraints.  The  STN 
determines a plan that has temporal flexibility; that is, it corresponds to a set of related schedules rather than a single 
schedule. Instead of having a single time, the events in the plan have a time interval with lower and upper bounds on 
when they can occur. This provides scope for adjusting to temporal deviations during execution.

The current tool has been integrated with SPIFe using a specialized EUROPA plugin, called DynamicEuropa. 
This  combination  provides  for  a Mixed-Initiative  Planning  framework  (Bresina  and Morris, 2007),9 in  which a 
human operator collaborates with the Europa suite of automated tools to create a plan. In the integration, SPIFe 
presents to the user a single nominal schedule, which is backed by a flexible plan in EUROPA. When adjusting the 
plan to satisfy constraints, the flexible plan is restricted to exclude constraint violations. EUROPA then computes a 
new nominal  schedule  that  satisfies  the  constraints  while  minimizing  the  changes  from the  previous  one,  and 
communicates it to SPIFe. This approach serves to maintain general plan stability and allows the human operator to 
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express  simple  timing  preferences.  The  nominal  schedule  can  also  provide  heuristic  guidance  to  an  automated 
planner (Morris et al., 2011)10 through the ordering of events.

This general approach was used for NASA’s recent Lunar Atmospheric Dust Environment Explorer (LADEE) 
mission.  However, the automatic planning capability of DynamicEuropa in LADEE and prior SPIFe integrations is 
limited to removing mutual exclusion flaws.  For the  AS project we have implemented a more general automatic 
solving capability that reschedules activities based on state requirements and effects.  For example,  the LADEE 
planner can automatically move activities away from forbidden regions but it does not automatically move them into 
required regions.   The new solver  can do so,  and can also move activities  that  supply  missing  effects from an 
activity reserve area to where they are needed in the plan.

III. Integration
Figure  2  shows  the  overall  architecture  and  information  flow  of  the  integrated  system.   The  modules 

communicate  with  each  other  through  publish-and-subscribe  middleware.   The  System  Health  module,  which 
includes TEAMS and ACAWS, provides a diagnosis of the failure and determines its downstream consequences. 
The  System Effects are those components that are disabled (no longer functioning as designed) as a result of the 
components that have failed.  (For example, a lamp may be disabled because the  module that supplies power to the  
lamp is broken.)   System Effects are computed  using a propagation approach that  traverses  the causal  chain of 
physical functionality between the components.   The ACAWS software reuses the diagnostic model built for use 
with TEAMS but augments it with effect propagation logic where necessary.

The Planning module, composed of SPIFe and EUROPA, determines the Activity Effects on the mission timeline, 
that is, activities that can no longer occur because they depend upon resources that have either been declared failed 
or non-operational by ACAWS. For example, suppose an astronaut was scheduled to perform a visual examination 
of a mineral sample using light from the lamp  to which  we referred earlier. Obviously, the examination could no 
longer be performed (the activity could not be carried out) if the lamp was unable to provide illumination (as would 
occur if  a failure in the electrical  power  system cut off  power to the lamp).  In that  case,  the plan needs to be 
modified to either fix the failure, thereby restoring power to the lamp and allowing the scheduled activity (sample 
inspection) to proceed, and/or to meet as many mission objectives as possible if the failed component could not be 
fixed.   Replanning  of  this  sort  takes  advantage  of  the  mixed-initiative  capability  of  the  SPIFe/EUROPA 
combination.  For example, the operator can make manual changes, or can call on the automatic planning capability 
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in EUROPA to assist.  In our experiments, EUROPA automatically added repair activities to fix broken electrical 
power system components and adjusted the crew schedules accordingly.

In previous applications, such as daily tactical planning for Mars robotic missions, SPIFe has been used in a 
standalone mode.  For our purposes, a more interactive mode was required, in which SPIFe “listens” to the failure 
diagnoses coming from ACAWS and automatically updates the plan in a way that shows the effects on the activities. 
To achieve this, we modified a feature, called the InCon, of the standalone tool. The InCon is used to specify initial 
conditions, which may include initial resource levels and initial states, such as the broken or disabled states of the 
components.  Normally, the  InCon is loaded by manually importing a file.  In our case, we modified the code to 
periodically  look for  a new version  of  the file  and use it  to overwrite  the existing  initial  conditions.   We also 
implemented a small process that subscribes to the failure reports and writes a corresponding InCon file.

The SPIFe  model involves an internal Activity Dictionary that has a complicated format.  While it is possible to 
load  an  xml-based  text  version  of  the  AD,  it  is  a  time-consuming  task  to  author  such  a  file  for  a  significant 
application,  especially  with  the  frequent  changes  that  occur  during  development.   To  facilitate  this  work,  we 
developed a general high-level language for specifying the model, and wrote an automatic translator for converting 
it to the AD format.  For this particular application, we also accepted as input a spreadsheet method of specifying the 
activity types and their properties.  This provided a more comfortable interface for our domain expert.  In previous 
integrations, a separate translator is needed to automatically extract the NDDL model needed by Europa from the 
SPIFe AD.  For our application, this required significant modification to support the capability to introduce new 
state-changing activities and move them to where they are needed in the plan.

The Activity Effects correspond to flaws in the SPIFe Timeline and Plan Advisor views.  In the Timeline view, 
these show up as red tick marks at the top and the culprit  activities  are depicted with red borders (see Fig.  3). 
Additional information is available by mouse-over.  The Plan Advisor gives even more details and also provides a 
fixViolations button, which calls Europa to do automatic replanning.  In our application, replanning placed repair 
activities at appropriate points in the plan, and rescheduled other activities around the repair so that crew-members 
were not double-booked.

When the call to fixViolations  returns,  it  presents  a set of recommendations in the form of a table that  lists 
activities with their old and new start times.  The user may accept or reject any or all of these.  The accepted changes 
are installed in the plan.   Conveniently,  SPIFe provides  an undo/redo feature  for  all  modifications  to the plan, 
including fixViolations, which allows toggling between the old and new plans.

IV. Tests
We constructed nine scenarios to test the integrated system. This involved selected activities  from the Deep 

Space Habitat Mission Operations Test timeline for four crew-members, the Commander (CDR), and three Flight 
Engineers  (FE1,  FE2,  FE3).   The  activities  were  associated  (Fig.  4)  with pieces  of  equipment  (resources)  that 
depended on components of the avionics power system, so failure of the components impacted crew activities. All 
but  one of the scenarios  involved an individual  fault  which varied according to its level  in the electrical power 
system hierarchy (and hence, the ACAWS diagnostic hierarchy).  Thus, a high-level fault would typically have a 
large impact on the activity schedule, affecting several individual activities, while a low-level fault might have little 
or no impact.  One scenario involved two independent faults.

The faults were injected into ACAWS using a “What-If” testing capability.  The resulting system effects were 
transmitted to SPIFe where the component failures were interpreted as unsatisfied state requirements.  In each case, 
EUROPA was then called to fix the violations.  One fault scenario did not impact any activities.  For the eight other  
scenarios, solutions were found without backtracking in all cases, with no domain-specific or complex heuristics. 
The nominal (original) plan had 36 activities.  A few activities required two crew members.  Automatic solving took 
about a second on a Mac laptop, which allowed for a comfortable interaction with ACAWS.
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V. Closing Remarks
Apart  from  extensive  changes  that  were  needed  to  support  enhanced  flaw  removal  in  the  fixViolations 

functionality, the integration mainly involved modification of the interfaces. We also changed some look-and-feel 
aspects of the GUI  to better suit the application.

In the scenarios considered, the plans to be repaired were assumed to happen after the time that the resources 
became broken and disabled.   In a more  continuous  or  ongoing  planning/execution scenario,  an unfolding  plan 
would need to be truncated to future activities before the repair process is applied.  Thus, activities in the past would 
be  discarded  and  activities  that  are  partially  executed  would  be  shortened.  In  that  case,  the  resource  state 
modifications might need to be applied to the measured or projected conditions at the current time rather than the 
original initial conditions.  The SPIFe tool does include a limited capability to project future conditions, but that 
might require extensions for such scenarios.

Search control was relatively straightforward for the type of planning needed for the tests.  In the future, we 
would like to address more challenging planning tasks such as synthesizing novel procedures from basic “atomic” 
actions.   Also  needed  are mechanisms  to  automatically  generate  planner  models  from more  neutral  knowledge 
sources that could be shared by many tools.
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